brimfile
What is brimfile?
brimfile is a Python library to read from and write to brim (Brillouin imaging) files, which contain both the spectra and analysed data for Brillouin imaging. More information about the brim file format can be found here.
Briefly, a brim file can contain multiple data groups, typically corresponding to imaging of the same sample at different timepoints/conditions. Each data group contains the spectral data as well as the metadata and the results of the analysis on the spectral data (which can be many in case multiple reconstruction pipelines are performed).
The structure of the brimfile library reflects the structure of the brim file and the user can access the data, metadata and analysis results through their corresponding classes.
- File: represents a brim file, which can be opened or created.
- Data: represents a data group in the brim file, which contains the spectral data and metadata.
- Metadata: represents the metadata associated to a data group (or to the whole file).
- AnalysysResults: represents the results of the analysis of the spectral data.
Install brimfile
We recommend installing brimfile in a virtual environment.
After activating the new environment, simply run:
pip install brimfile
If you also need the support for exporting the analyzed data to OME-TIFF files, you can install the optional dependencies with:
pip install "brimfile[export-tiff]"
For accessing remote data (i.e. S3 buckets), you need remote-store:
pip install "brimfile[remote-store]"
Quickstart
The following code shows how to:
- open a .brim file
- get an image for the Brillouin shift
- get the spectrum at a specific pixel
- get the metadata.
from brimfile import File, Data, Metadata
Quantity = Data.AnalysisResults.Quantity
PeakType = Data.AnalysisResults.PeakType
filename = 'path/to/your/file.brim.zarr'
f = File(filename)
# get the first data group in the file
d = f.get_data()
# get the first analysis results in the data group
ar = d.get_analysis_results()
# get the image for the shift
img, px_size = ar.get_image(Quantity.Shift, PeakType.average)
# get the spectrum at the pixel (pz,py,px)
(pz,py,px) = (0,0,0)
PSD, frequency, PSD_units, frequency_units = d.get_spectrum_in_image((pz,py,px))
# get the metadata
md = d.get_metadata()
all_metadata = md.all_to_dict()
# close the file
f.close()
Store types
Currently brimfile supports zip, zarr and S3 buckets as a store. When opening or creating a file, the storage be selected by using the brimfile.file_abstraction.StoreType enum; zip and zarr can be used both for reading and writing while S3 only for reading.
Although it is possible to write directly to zip, this will create duplicated entries in the archive (see GitHub issue).
A possible workaround is to create a .zarr store instead and zip the folder afterwards. Importantly the root of the archive should not contain the folder itself, i.e. you should go inside the .zarr folder, select all the elements there, right click on them to create a .zip archive.
Use brimfile
File
The main class is brimfile.file.File, which represents a brim file.
It can be used to create a new brim file (brimfile.file.File.create) or to open an existing one (brimfile.file.File.__init__).
import brimfile as brim
filename = 'path/to/your/file.brim.zarr'
# Open an existing brim file
f = brim.File(filename)
# or create a new one
f = brim.File.create(filename)
Data
You can then get a brimfile.data.Data object representing the data group in the brim file
by opening an existing one (brimfile.file.File.get_data).
# Get the first data group in the file
data = f.get_data()
To add a new data group to the file, you can use the brimfile.file.File.create_data_group method,
which accepts a 4D array for the PSD with dimensions (z, y, x, spectrum),
a frequency array which might have the same size as PSD or be 1D, in case the frequency axis is the same for all the spectra.
# or create a new one
data = f.create_data_group(PSD, freq_GHz, (dz, dy, dx), name='my_data_group')
Alternatively you can use brimfile.file.File.create_data_group_raw, which let you directly assign the correspondence
between the spatial positions and the spectra trhough the scanning dictionary.
Once you have an istance of brimfile.data.Data, you can get the spectrum corresponding to a pixel in the image
by calling the brimfile.data.Data.get_spectrum_in_image method:
PSD, frequency, PSD_units, frequency_units = data.get_spectrum_in_image((pz,py,px))
Metadata
You can then get a brimfile.metadata.Metadata object by simply calling the brimfile.data.Data.get_metadata method on a previously retrieved Data object.
The returned Metadata object contains all the metadata associated with the file and the data group.
metadata = data.get_metadata()
The list of available metadata is defined here.
New metadata can be added to the current data group (or to the whole file) by calling the brimfile.metadata.Metadata.add method.
import datetime
Attr = Metadata.Item
datetime_now = datetime.now().isoformat()
temp = Attr(22.0, 'C')
metadata.add(Metadata.Type.Experiment, {'Datetime':datetime_now, 'Temperature':temp},local=True)
A single metadata item can be retrieved by indexing the Metadata object, which takes a string in the format 'group.object', e.g. 'Experiment.Datetime'.
datetime = metadata['Experiment.Datetime']
A dictionary containing all metadata can be retrieved by calling the brimfile.metadata.Metadata.all_to_dict method.
metadata.all_to_dict()
AnalysisResults
The results of the analysis can be accessed through the brimfile.data.Data.AnalysisResults object, obtained by calling the brimfile.data.Data.get_analysis_results method on a previously retrieved Data object:
analysis_results = data.get_analysis_results()
or create a new one by calling the brimfile.data.Data.create_analysis_results_group:
analysis_results = data.create_analysis_results_group(shift, width,
name='my_analysis_results')
Alternatively, if the data object was created with the brimfile.file.File.create_data_group_raw method,
you can create the analysis results group by calling brimfile.data.Data.create_analysis_results_group_raw.
AnalysisResults also exposes a method to retrieve the images of the analysis results (brimfile.data.Data.AnalysisResults.get_image):
ar_cls = Data.AnalysisResults
img, px_size = analysis_results.get_image(ar_cls.Quantity.Shift, ar_cls.PeakType.average)
List the contents of a brim file
The brimfile library provides methods to list the contents of a brim file.
To list all the data groups in a brim file, you can use the brimfile.file.File.list_data_groups method.
Once you have a Data object, you can list the analysis results in it by calling the brimfile.data.Data.list_AnalysisResults method.
Once you have an AnalysisResults object, you can determine:
- if the Stokes and/or anti-Stokes peaks are present by calling the
brimfile.data.Data.AnalysisResults.list_existing_peak_typesmethod; - the available quantities (e.g. shift, linewidth, etc...) in the analysis results by calling the
brimfile.data.Data.AnalysisResults.list_existing_quantitiesmethod.
Example code
Here is a simple example which creates a brim file with a data group and some metadata and then reads it back.
We first write a function to generate some dummy data:
import numpy as np
def generate_data():
def lorentzian(x, x0, w):
return 1/(1+((x-x0)/(w/2))**2)
Nx, Ny, Nz = (7, 5, 3) # Number of points in x,y,z
dx, dy, dz = (0.4, 0.5, 2) # Stepsizes (in um)
n_points = Nx*Ny*Nz # total number of points
width_GHz = 0.4
width_GHz_arr = np.full((Nz, Ny, Nx), width_GHz)
shift_GHz_arr = np.empty((Nz, Ny, Nx))
freq_GHz = np.linspace(6, 9, 151) # 151 frequency points
PSD = np.empty((Nz, Ny, Nx, len(freq_GHz)))
for i in range(Nz):
for j in range(Ny):
for k in range(Nx):
index = k + Nx*j + Ny*Nx*i
#let's increase the shift linearly to have a readout
shift_GHz = freq_GHz[0] + (freq_GHz[-1]-freq_GHz[0]) * index/n_points
spectrum = lorentzian(freq_GHz, shift_GHz, width_GHz)
shift_GHz_arr[i,j,k] = shift_GHz
PSD[i, j, k,:] = spectrum
return PSD, freq_GHz, (dz,dy,dx), shift_GHz_arr, width_GHz_arr
Now we can use this function to create a brim file with a data group and some metadata:
from brimfile import File, Data, Metadata, StoreType
from datetime import datetime
filename = 'path/to/your/file.brim.zarr'
f = File.create(filename, store_type=StoreType.AUTO)
PSD, freq_GHz, (dz,dy,dx), shift_GHz, width_GHz = generate_data()
d0 = f.create_data_group(PSD, freq_GHz, (dz,dy,dx), name='test1')
# Create the metadata
Attr = Metadata.Item
datetime_now = datetime.now().isoformat()
temp = Attr(22.0, 'C')
md = d0.get_metadata()
md.add(Metadata.Type.Experiment, {'Datetime':datetime_now, 'Temperature':temp})
md.add(Metadata.Type.Optics, {'Wavelength':Attr(660, 'nm')})
# Add some metadata to the local data group
temp = Attr(37.0, 'C')
md.add(Metadata.Type.Experiment, {'Temperature':temp}, local=True)
# create the analysis results
ar = d0.create_analysis_results_group({'shift':shift_GHz, 'shift_units': 'GHz',
'width': width_GHz, 'width_units': 'Hz'},
{'shift':shift_GHz, 'shift_units': 'GHz',
'width': width_GHz, 'width_units': 'Hz'},
name = 'test1_analysis')
f.close()
and we can read it back:
from brimfile import File, Data, Metadata
filename = 'path/to/your/file.brim.zarr'
f = File(filename)
# check if the file is read only
f.is_read_only()
#list all the data groups in the file
data_groups = f.list_data_groups(retrieve_custom_name=True)
# get the first data group in the file
d = f.get_data()
# get the name of the data group
d.get_name()
# get the number of parameters which the spectra depend on
n_pars = d.get_num_parameters()
# get the metadata
md = d.get_metadata()
all_metadata = md.all_to_dict()
# the list of metadata is defined here https://github.com/prevedel-lab/Brillouin-standard-file/blob/main/docs/brim_file_metadata.md
time = md['Experiment.Datetime']
time.value
time.units
temp = md['Experiment.Temperature']
md_dict = md.to_dict(Metadata.Type.Experiment)
#get the list of analysis results in the data group
ar_list = d.list_AnalysisResults(retrieve_custom_name=True)
# get the first analysis results in the data group
ar = d.get_analysis_results()
# get the name of the analysis results
ar.get_name()
# list the existing peak types and quantities in the analysis results
pt = ar.list_existing_peak_types()
qt = ar.list_existing_quantities()
# get the image of the shift quantity for the average of the Stokes and anti-Stokes peaks
img, px_size = ar.get_image(Data.AnalysisResults.Quantity.Shift, Data.AnalysisResults.PeakType.average)
# get the units of the shift quantity
u = ar.get_units(Data.AnalysisResults.Quantity.Shift)
# get a quantity at a specific pixel (coord) in the image
coord = (1,3,4)
qt_at_px = ar.get_quantity_at_pixel(coord, Data.AnalysisResults.Quantity.Shift, Data.AnalysisResults.PeakType.average)
assert img[coord]==qt_at_px
# get the spectrum in the image at a specific pixel (coord)
PSD, frequency, PSD_units, frequency_units = d.get_spectrum_in_image(coord)
f.close()
Export the data to a different format
OME-TIFF
You can export a specific quantity in the analyzed data to OME-TIFF files using the brimfile.data.Data.AnalysisResults.save_image_to_OMETiff method on an instance ar of the AnalysisResults class.
ar_cls = Data.AnalysisResults
ar.save_image_to_OMETiff(ar_cls.Quantity.Shift, ar_cls.PeakType.average, filename='path/to/your/exported_tiff' )
1""" 2## What is brimfile? 3 4*brimfile* is a Python library to read from and write to brim (**Br**illouin **im**aging) files, 5which contain both the spectra and analysed data for Brillouin imaging. 6More information about the brim file format can be found [here](https://github.com/prevedel-lab/Brillouin-standard-file). 7 8Briefly, a brim file can contain multiple data groups, 9typically corresponding to imaging of the same sample at different timepoints/conditions. 10Each data group contains the spectral data as well as the metadata and 11the results of the analysis on the spectral data (which can be many in case multiple reconstruction pipelines are performed). 12 13The structure of the *brimfile* library reflects the structure of the brim file and the user can access the data, 14metadata and analysis results through their corresponding classes. 15 16- [File](#file): represents a brim file, which can be opened or created. 17- [Data](#data): represents a data group in the brim file, which contains the spectral data and metadata. 18- [Metadata](#metadata): represents the metadata associated to a data group (or to the whole file). 19- [AnalysysResults](#analysisresults): represents the results of the analysis of the spectral data. 20 21 22## Install brimfile 23 24We recommend installing *brimfile* in a [virtual environment](https://docs.python.org/3/library/venv.html). 25 26After activating the new environment, simply run: 27 28```bash 29pip install brimfile 30``` 31 32If you also need the support for exporting the analyzed data to OME-TIFF files, 33you can install the optional dependencies with: 34 35```bash 36pip install "brimfile[export-tiff]" 37``` 38 39For accessing remote data (i.e. S3 buckets), you need `remote-store`: 40 41```bash 42pip install "brimfile[remote-store]" 43``` 44 45## Quickstart 46 47The following code shows how to: 48- open a .brim file 49- get an image for the Brillouin shift 50- get the spectrum at a specific pixel 51- get the metadata. 52 53```Python 54from brimfile import File, Data, Metadata 55Quantity = Data.AnalysisResults.Quantity 56PeakType = Data.AnalysisResults.PeakType 57 58filename = 'path/to/your/file.brim.zarr' 59f = File(filename) 60 61# get the first data group in the file 62d = f.get_data() 63 64# get the first analysis results in the data group 65ar = d.get_analysis_results() 66 67# get the image for the shift 68img, px_size = ar.get_image(Quantity.Shift, PeakType.average) 69 70# get the spectrum at the pixel (pz,py,px) 71(pz,py,px) = (0,0,0) 72PSD, frequency, PSD_units, frequency_units = d.get_spectrum_in_image((pz,py,px)) 73 74# get the metadata 75md = d.get_metadata() 76all_metadata = md.all_to_dict() 77 78# close the file 79f.close() 80``` 81 82## Store types 83 84Currently brimfile supports zip, zarr and S3 buckets as a store. 85When opening or creating a file, the storage be selected by using the brimfile.file_abstraction.StoreType enum; zip and zarr can be used both for reading and writing while S3 only for reading. 86 87Although it is possible to write directly to zip, this will create duplicated entries in the archive (see [GitHub issue](https://github.com/zarr-developers/zarr-python/issues/1695)). 88 89A possible workaround is to create a .zarr store instead and zip the folder afterwards. 90Importantly the root of the archive should not contain the folder itself, i.e. you should go inside the .zarr folder, select all the elements there, right click on them to create a .zip archive. 91 92 93## Use brimfile 94 95### File 96 97The main class is `brimfile.file.File`, which represents a brim file. 98It can be used to create a new brim file (`brimfile.file.File.create`) or to open an existing one (`brimfile.file.File.__init__`). 99 100```Python 101import brimfile as brim 102 103filename = 'path/to/your/file.brim.zarr' 104 105# Open an existing brim file 106f = brim.File(filename) 107 108# or create a new one 109f = brim.File.create(filename) 110``` 111 112### Data 113 114You can then get a `brimfile.data.Data` object representing the data group in the brim file 115by opening an existing one (`brimfile.file.File.get_data`). 116 117```Python 118# Get the first data group in the file 119data = f.get_data() 120``` 121 122To add a new data group to the file, you can use the `brimfile.file.File.create_data_group` method, 123which accepts a 4D array for the PSD with dimensions (z, y, x, spectrum), 124a frequency array which might have the same size as PSD or be 1D, in case the frequency axis is the same for all the spectra. 125```Python 126# or create a new one 127data = f.create_data_group(PSD, freq_GHz, (dz, dy, dx), name='my_data_group') 128``` 129Alternatively you can use `brimfile.file.File.create_data_group_raw`, which let you directly assign the correspondence 130between the spatial positions and the spectra trhough the `scanning` dictionary. 131 132Once you have an istance of `brimfile.data.Data`, you can get the spectrum corresponding to a pixel in the image 133by calling the `brimfile.data.Data.get_spectrum_in_image` method: 134```Python 135PSD, frequency, PSD_units, frequency_units = data.get_spectrum_in_image((pz,py,px)) 136``` 137 138### Metadata 139 140You can then get a `brimfile.metadata.Metadata` object by simply calling the `brimfile.data.Data.get_metadata` method on a previously retrieved `Data` object. 141The returned Metadata object contains all the metadata associated with the file and the data group. 142```Python 143metadata = data.get_metadata() 144``` 145The list of available metadata is defined [here](https://github.com/prevedel-lab/Brillouin-standard-file/blob/main/docs/brim_file_metadata.md). 146 147New metadata can be added to the current data group (or to the whole file) by calling the `brimfile.metadata.Metadata.add` method. 148```Python 149import datetime 150 151Attr = Metadata.Item 152datetime_now = datetime.now().isoformat() 153temp = Attr(22.0, 'C') 154 155metadata.add(Metadata.Type.Experiment, {'Datetime':datetime_now, 'Temperature':temp},local=True) 156``` 157A single metadata item can be retrieved by indexing the `Metadata` object, which takes a string in the format 'group.object', e.g. 'Experiment.Datetime'. 158```Python 159datetime = metadata['Experiment.Datetime'] 160``` 161A dictionary containing all metadata can be retrieved by calling the `brimfile.metadata.Metadata.all_to_dict` method. 162```Python 163metadata.all_to_dict() 164``` 165 166### AnalysisResults 167 168The results of the analysis can be accessed through the `brimfile.data.Data.AnalysisResults` object, obtained by calling the `brimfile.data.Data.get_analysis_results` method on a previously retrieved `Data` object: 169``` Python 170analysis_results = data.get_analysis_results() 171``` 172or create a new one by calling the `brimfile.data.Data.create_analysis_results_group`: 173``` Python 174analysis_results = data.create_analysis_results_group(shift, width, 175 name='my_analysis_results') 176``` 177Alternatively, if the `data` object was created with the `brimfile.file.File.create_data_group_raw` method, 178you can create the analysis results group by calling `brimfile.data.Data.create_analysis_results_group_raw`. 179 180`AnalysisResults` also exposes a method to retrieve the images of the analysis results (`brimfile.data.Data.AnalysisResults.get_image`): 181 182``` Python 183ar_cls = Data.AnalysisResults 184img, px_size = analysis_results.get_image(ar_cls.Quantity.Shift, ar_cls.PeakType.average) 185``` 186 187## List the contents of a brim file 188 189The *brimfile* library provides methods to list the contents of a brim file. 190 191To list all the data groups in a brim file, you can use the `brimfile.file.File.list_data_groups` method. 192 193Once you have a `Data` object, you can list the analysis results in it by calling the `brimfile.data.Data.list_AnalysisResults` method. 194 195Once you have an `AnalysisResults` object, you can determine: 196- if the Stokes and/or anti-Stokes peaks are present by calling the `brimfile.data.Data.AnalysisResults.list_existing_peak_types` method; 197- the available quantities (e.g. shift, linewidth, etc...) in the analysis results by calling the `brimfile.data.Data.AnalysisResults.list_existing_quantities` method. 198 199## Example code 200 201Here is a simple example which creates a brim file with a data group and some metadata and then reads it back. 202 203We first write a function to generate some dummy data: 204 205``` Python 206import numpy as np 207 208def generate_data(): 209 def lorentzian(x, x0, w): 210 return 1/(1+((x-x0)/(w/2))**2) 211 Nx, Ny, Nz = (7, 5, 3) # Number of points in x,y,z 212 dx, dy, dz = (0.4, 0.5, 2) # Stepsizes (in um) 213 n_points = Nx*Ny*Nz # total number of points 214 215 width_GHz = 0.4 216 width_GHz_arr = np.full((Nz, Ny, Nx), width_GHz) 217 shift_GHz_arr = np.empty((Nz, Ny, Nx)) 218 freq_GHz = np.linspace(6, 9, 151) # 151 frequency points 219 PSD = np.empty((Nz, Ny, Nx, len(freq_GHz))) 220 for i in range(Nz): 221 for j in range(Ny): 222 for k in range(Nx): 223 index = k + Nx*j + Ny*Nx*i 224 #let's increase the shift linearly to have a readout 225 shift_GHz = freq_GHz[0] + (freq_GHz[-1]-freq_GHz[0]) * index/n_points 226 spectrum = lorentzian(freq_GHz, shift_GHz, width_GHz) 227 shift_GHz_arr[i,j,k] = shift_GHz 228 PSD[i, j, k,:] = spectrum 229 230 return PSD, freq_GHz, (dz,dy,dx), shift_GHz_arr, width_GHz_arr 231``` 232 233Now we can use this function to create a brim file with a data group and some metadata: 234 235``` Python 236 from brimfile import File, Data, Metadata, StoreType 237 from datetime import datetime 238 239 filename = 'path/to/your/file.brim.zarr' 240 241 f = File.create(filename, store_type=StoreType.AUTO) 242 243 PSD, freq_GHz, (dz,dy,dx), shift_GHz, width_GHz = generate_data() 244 245 d0 = f.create_data_group(PSD, freq_GHz, (dz,dy,dx), name='test1') 246 247 # Create the metadata 248 Attr = Metadata.Item 249 datetime_now = datetime.now().isoformat() 250 temp = Attr(22.0, 'C') 251 md = d0.get_metadata() 252 253 md.add(Metadata.Type.Experiment, {'Datetime':datetime_now, 'Temperature':temp}) 254 md.add(Metadata.Type.Optics, {'Wavelength':Attr(660, 'nm')}) 255 # Add some metadata to the local data group 256 temp = Attr(37.0, 'C') 257 md.add(Metadata.Type.Experiment, {'Temperature':temp}, local=True) 258 259 # create the analysis results 260 ar = d0.create_analysis_results_group({'shift':shift_GHz, 'shift_units': 'GHz', 261 'width': width_GHz, 'width_units': 'Hz'}, 262 {'shift':shift_GHz, 'shift_units': 'GHz', 263 'width': width_GHz, 'width_units': 'Hz'}, 264 name = 'test1_analysis') 265 f.close() 266``` 267and we can read it back: 268``` Python 269 from brimfile import File, Data, Metadata 270 271 filename = 'path/to/your/file.brim.zarr' 272 273 f = File(filename) 274 275 # check if the file is read only 276 f.is_read_only() 277 278 #list all the data groups in the file 279 data_groups = f.list_data_groups(retrieve_custom_name=True) 280 281 # get the first data group in the file 282 d = f.get_data() 283 # get the name of the data group 284 d.get_name() 285 286 # get the number of parameters which the spectra depend on 287 n_pars = d.get_num_parameters() 288 289 # get the metadata 290 md = d.get_metadata() 291 all_metadata = md.all_to_dict() 292 # the list of metadata is defined here https://github.com/prevedel-lab/Brillouin-standard-file/blob/main/docs/brim_file_metadata.md 293 time = md['Experiment.Datetime'] 294 time.value 295 time.units 296 temp = md['Experiment.Temperature'] 297 md_dict = md.to_dict(Metadata.Type.Experiment) 298 299 300 #get the list of analysis results in the data group 301 ar_list = d.list_AnalysisResults(retrieve_custom_name=True) 302 # get the first analysis results in the data group 303 ar = d.get_analysis_results() 304 # get the name of the analysis results 305 ar.get_name() 306 # list the existing peak types and quantities in the analysis results 307 pt = ar.list_existing_peak_types() 308 qt = ar.list_existing_quantities() 309 # get the image of the shift quantity for the average of the Stokes and anti-Stokes peaks 310 img, px_size = ar.get_image(Data.AnalysisResults.Quantity.Shift, Data.AnalysisResults.PeakType.average) 311 # get the units of the shift quantity 312 u = ar.get_units(Data.AnalysisResults.Quantity.Shift) 313 314 # get a quantity at a specific pixel (coord) in the image 315 coord = (1,3,4) 316 qt_at_px = ar.get_quantity_at_pixel(coord, Data.AnalysisResults.Quantity.Shift, Data.AnalysisResults.PeakType.average) 317 assert img[coord]==qt_at_px 318 319 # get the spectrum in the image at a specific pixel (coord) 320 PSD, frequency, PSD_units, frequency_units = d.get_spectrum_in_image(coord) 321 322 f.close() 323``` 324 325## Export the data to a different format 326 327### OME-TIFF 328 329You can export a specific quantity in the analyzed data to OME-TIFF files using the `brimfile.data.Data.AnalysisResults.save_image_to_OMETiff` method on an instance `ar` of the `AnalysisResults` class. 330``` Python 331ar_cls = Data.AnalysisResults 332ar.save_image_to_OMETiff(ar_cls.Quantity.Shift, ar_cls.PeakType.average, filename='path/to/your/exported_tiff' ) 333``` 334""" 335 336__version__ = "1.3.2" 337 338from .file import File 339from .data import Data 340from .metadata import Metadata 341from .file_abstraction import StoreType